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SUMMARY 
An efficient and highly accurate algorithm based on a spectral collocation method is developed for 
numerical solution of the compressible, two-dimensional and axisymmetric boundary layer equations. The 
numerical method incorporates a fifth-order, fully implicit marching scheme in the streamwise (timelike) 
dimension and a spectral collocation method based on Chebyshev polynomial expansions in the wall- 
normal (spacelike) dimension. The discrete governing equations are cast in residual form and the residuals 
are minimized at each marching step by a preconditioned Richardson iteration scheme which fully couples 
energy, momentum and continuity equations. Preconditioning on the basis of the finite difference analogues 
of the governing equations results in a computationally efficient iteration with acceptable convergence 
properties. A practical application of the algorithm arises in the area of compressible linear stability theory, 
in the investigation of the effects of transverse curvature on the stability of flows over axisymmetric bodies. 
The spectral collocation algorithm is used to derive the non-similar mean velocity and temperature profiles 
in the boundary layer of a ‘fuselage’ (cylinder) in a high-speed (Mach 5 )  flow parallel to its axis. The stability 
of the flow is shown to be sensitive to the gradual streamwise evolution of the mean flow and it is concluded 
that the effects of transverse curvature on stability should not be ignored routinely. 
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INTRODUCTION 

In modern aerodynamics the boundary layer approximation is an invaluable tool of widespread 
applicability. Although it is still beyond the capability of the present generation of super- 
computers to solve the compressible Navier-Stokes equations for complete aerodynamic config- 
urations, it is commonplace for engineering purposes to patch inviscid ‘outer’ solutions to the 
Euler equations with ‘inner’ solutions to the boundary layer equations to obtain realistic lift and 
drag estimates. A different application, and the motivation for this work, lies in the area of 
stability and transition, for which solutions to the boundary layer equations provide the ‘mean 
flow’ velocity and temperature profiles of stability analyses. In this latter context, accuracy is very 
important, particularly for high-speed flows whose stability can exhibit extreme sensitivity to 
variations in the mean, as will be shown. 

In general, the differential equations which describe two-dimensional or axisymmetric bound- 
ary layers define initial boundary value problems (IBVP) in which the streamwise spatial co- 
ordinate is timelike. For a limited subclass of problems, similarity solutions exist, in which case 
the timelike variation vanishes. Our interest here is in the more general case of spatially evolving 
boundary layers. 
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The papers of Blottner,’*’ Harris and Blanchard3 and Wornom4 provide a thorough review of 
the state of the art in computational methods for two-dimensional and axisymmetric boundary 
layers prior to 1982. In the timelike direction, implicit marching techniques are used almost 
universally. Fully explicit methods for the boundary layer equations have not met with success in 
practice owing to their peculiar nature. Finite difference methods dominate among techniques for 
discretization of the spacelike variable. Blottner ’* * examines a number of second-order-accurate 
finite difference methods appropriate to the numerical computation of incompressible and 
compressible boundary layer flows. Harris and Blanchard3 incorporate second-order methods 
into a versatile computer code which is capable of computing compressible laminar, transitional 
or turbulent boundary layers for a wide class of geometries and flow conditions. Wornom4 
compares higher-order methods and presents a fourth-order box scheme which remains a 
standard of efficiency and accuracy among finite difference methods for incompressible laminar 
boundary layers. Very recently, spectral numerical methods have been adapted to the in- 
compressible boundary layer equations by Streett et d5 Spectral techniques are advantageous in 
that one obtains a high degree of accuracy relative to finite difference methods with far fewer grid 
points or, from a different perspective, higher accuracy is obtained with an equivalent number of 
points. To date, the compressible boundary layer equations have been treated exclusively by finite 
difference methods. 

In this paper we adapt the spectral collocation method of Streett et al.’ to the compressible 
boundary layer equations and demonstrate the method in computing the non-similar boundary 
layer of a cylinder in a high-speed flow parallel to its axis. The numerical method incorporates a 
high-order, fully implicit, finite difference technique in the marching direction and a spectral 
collocation technique based on Chebyshev polynomials in the wall-normal direction. The 
spectrally accurate, discrete governing equations are cast in residual form and the residuals are 
minimized at each marching step by a preconditioned Richardson iteration6 scheme which fully 
couples energy, momentum and continuity equations. Construction of the preconditioner based 
on finite difference analogues of the discrete governing equations leads to a computationally 
efficient iteration with acceptable convergence properties. 

The next section discusses the compressible boundary layer equations and the particular 
scalings and transformations used for the model (cylindrical) geometry. The numerical method is 
presented in detail in the third section. In the fourth section the spectral method is used to derive 
the boundary layer velocity and temperature profiles along a cylindrical ‘fuselage’ in high-speed 
flow, and the spectrally obtained results are validated against those obtained by a well-proven 
finite difference code. The linear stability of the flow along the cylinder is then examined to assess 
the sensitivity of certain primary instability mechanisms to the effects of transverse curvature, 
including streamwise variations in the mean flow. The final section closes with concluding 
remarks regarding the numerical method and some implications of this work for compressible 
linear stability theory. 

GOVERNING EQUATIONS AND SCALING 

Consider the compressible flow along an axisymmetric body at zero incidence angle and of radius 
R(%), where 2 is the arc length along the body m e a h e d  from the stagnation point, j j  is the wall- 
normal co-ordinate and F is the radial co-ordinate from the axis of revolution, as shown in 
Figure 1. If U and 17 denote the velocity components in the X- and j-direction respectively, then the 
evolution of the laminar boundary layer along the body is defined by equations (l).’.’ The 
remaining variables T, p, p ,  ii and I? are respectively the temperature, pressure, density, viscosity 
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Figure 1. Co-ordinate system and notation for the boundary layer on an axisymmetric body 

and thermal conductivity, and Cp is the specific heat at constant pressure, assumed here to be 
constant. 

Equations (la-c) are derived from the steady, compressible Navier-Stokes equations under the 
classical boundary layer assumptions ti > B and a/ay > a/&? and describe respectively the conser- 
vation of energy, streamwise momentum and mass.8 The momentum equation in the azimuthal 
direction vanishes owing to the assumption of axisymmetry and the conservation law of 
momentum in the wall-normal direction degenerates to 

ag la j  = 0, ( 1 4  
which states that pressure is constant across the boundary layer. 

conductivity law K( T) .  As the equation of state we take the ideal gas law 
System (1) is closed by the specification of an equation of state, a viscosity law j i (T)  and a 

p=pRgT, 0 )  
where Rg is the ideal gas constant. Equation (le) is valid for a thermally perfect gas, which limits 
its practical application to edge Mach numbers less than about 6.’ We adopt the Sutherland law8 
to model viscosity-temperature and conductivity-temperature relations. These will be defined 
precisely once variables have been made dimensionless. 

Non-dimensionalizat ion 

To simplify the presentation of the method, we consider only laminar flow and assume constant 
post-shock edge conditions, which we denote by subscript ‘e’. Moreover, for expository purposes 
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we restrict consideration to the simplest axisymmetric body, the cylinder, in the absence of a 
streamwise pressure gradient (ap/aX =O). However, we note that equations (1) are quite general in 
the sense that they model the boundary layer along a cylinder, a sharp cone, a blunt cone or a 
generic axisymmetric shape, depending on the definition of the geometry function R(2). In 
general, 

f(2, y) = R(2) + J cos 4(X), (24 
where 4 is the angle of the surface tangent relative to the axis of symmetry. Specifically, (2a) 
reduces to (2b) for the cylinder, 

f = R + J ,  (2b) 

(24 

where I? is the (constant) radius, and to (2c) for the sharp cone, 

f =  X sin 4 + j cos 4, 
where 4 is the cone half-angle. Moreover, i f f=  1, system (1) degenerates to the boundary layer 
equations for flat plate flow. Furthermore, by clever co-ordinate transformation (see Reference 9, 
for example) it is possible to adapt equations (1) to spatially varying edge conditions; and by 
reinterpretation of the visc~sity,~ turbulent and transitional boundary layers are modelled by (1). 
The reader is referred to these sources for adaptation of the method to other specific applications. 

For the cylindrical geometry shown in Figure 2 and defined by (2b) we prefer the scaling of 
Duck" to conventional boundary layer scaling to render equations (1) dimensionless: 

x = ( l / R e )  X/R, Y = M, r = FIR, (34 

u = u/lie, C= ReC/ti,, (3b) 

P = Plijfe, P=i j IOe,  e= i-pe, (3c) 

P=i i lPe*  lC=IC/K , .  ( 3 4  

Re = &tie RIP,. (4) 

In (3) the Reynolds number is defined on the basis of radius R and edge conditions, i.e. 

Duck's scaling for the cylinder has the advantage over conventional scaling in that the dimen- 
sionless governing equations (5 )  are completely independent of Re; consequently, solutions to ( 5 )  
are universal with respect to Re. 

a a 
ax aY 
- (rpu)  + - ( rpC)  = 0, 

YM,2 P = PO, ( 5 4  

r = l + y .  (54 

Pr = jie CP/& (6) 

In (9, M e  is the edge Mach number and Pr is the Prandtl number defined as follows: 
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Figure 2. Co-ordinate system and notation for the boundary layer on a circular cylinder 

To derive (5 ) ,  we have made use of the following relationships for thermally perfect gases:' 

Y = C P K ,  Rg = cp - C", ij,U:=Yl,M:, (7) 

where Cv is the specific heat at constant volume, assumed to be constant. Since both Cp and Cv 
have been assumed constant, the ratio of specific heats, y, is constant by definition and the 
governing equations are strictly valid only for thermally and calorically perfect gases. 

In the absence of a pressure gradient, pressure is constant (arbitrary) and the equation of state 
(5d) is taken to be 

p e =  1. (8) 

In dimensionless form the Sutherland viscosity (conductivity) law becomes 

198.6 (Rankine) c= - 93'2(1+ c) 
p(e) = K(0) = 

8 + C  ' T. (Rankine) ' (9) 

There are several reasons why further transformation is desirable prior to attempting nu- 
merical solution of the boundary layer equations. Equations (5 )  in their present form are singular 
at x = 0. By appropriate co-ordinate transformation [ = ((x, y), r]  = q(x, y) the singularity is 
removed, the governing system is simplified and the growth of the boundary layer in the 
transform ([, q)-plane is reduced, thereby facilitating the numerical method. 

Motivated by the 'root x' growth characteristic of laminar boundary layers, we define 

After straightforward manipulation of (5) using (10) and (11) we arrive at the governing energy, 
momentum and continuity equations in the transform ([, r])-plane: 
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Here the following definitions have been exploited for convenience: 

= rp ,  rZ = rlc, f = rpu, g = rp(qu - u), v = C/C. (13) 

r =  1 +cq. (14) 

In the transform co-ordinates the radial co-ordinate r(c, q) assumes the form 

Transformation (10) is essentially that proposed by Duck” for the cylindrical boundary layer, 
which we prefer here for purposes of clarity. The reader is cautioned, however, that the form of the 
transformation has considerable impact on the performance of the numerical method, by 
influencing the condition number of the Jacobian matrices associated with iteration schemes. Our 
experience has been that the more complicated co-ordinate transformation found in Reference 3 
is preferred for adaptation of this method to the boundary layer of a cone. 

We make several observations regarding governing system (12). Governing energy (12a) and 
momentum (12b) equations are parabolic with streamwise variable [ as timelike. However, as 
pointed out by Blottner,’ the boundary layer equations are not the usual (Cauchy) type of initial 
value problem, because the timelike derivative of g does not appear. It is therefore more 
appropriate to think of system (12) as defining a constrained evolution problem in which 
continuity equation (12c) poses a constraint on 8 and u. Another peculiarity, which accounts 
partially for the difficulty encountered in attempts to use fully explicit methods to march the 
solution away from c=O, is the factor [ preceding timelike derivatives. Whenever (=O, r = l ,  
timelike derivatives vanish and the solution to (12) is the similarity solution for flow over a flat 
plate. For [ >O, self-similarity (a@( =0) is destroyed by the dependence of the right-hand side on ( 
through the radial co-ordinate r. 

Boundary and initial conditions 

The mathematical formulation of the governing parabolic system of equations (12) is com- 
pleted by specification of boundary and initial conditions. At the wall, no-slip conditions on 
velocity lead to 

u(e ,o )=g(L  O)=f (C ,  O)=O. (15) 

For the energy equation we consider either fixed temperature or adiabatic wall conditions, (16a) 
or (16b) respectively, where subscript ‘w’ denotes the wall value: 

e(c, o)=e,= TWITe, ( W  

aeg, oyaq = 0. (16b) 
At the outer edge of the boundary layer q = qMAX, where q M A x  is a large but finite distance (chosen 
on the basis of experience), we assume that temperature and velocity have attained their 
respective edge values, in which case 

e(5, v M A X ) = ~ ( L  vMAx)= 1. (17) 
The necessity of a corresponding far-field boundary condition on g is eliminated by the integral 
treatment of the continuity equation addressed in the next section. Therefore g((, qMAX) remains 
unspecified. 

Regarding the initial condition, we adopt the conventional practice of using the ‘flat plate’ 
(c = 0) similarity solution to initialize the marching procedure, based on the reasoning that very 
near the leading edge 8 < Z? (where 8 is the boundary layer displacement thickness) and transverse 
curvature is insignificant. Ironically then, system (12) defines its own initial condition. 
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NUMERICAL METHOD 

Governing equations (12) define an initial boundary value problem (IBVP). In the timelike i- 
direction we make straightforward use of fully implicit, high-order, backward finite differencing 
to march the solution forward. For this purpose it is most convenient to use equal step widths A[ 
whereby 

&=iA[, i=O,  1,2,. . . . (18) 

In the wall-normal ?-direction we exploit a spectral collocation method, where ‘spectral’ refers 
to the approximation of the continuous operator a / @  by a spectrally accurate discrete operator 
L, and where ‘collocation’ refers to the error norm; i.e. the residuals of the discretized 
governing equations are required to vanish identically at each of N + 1 collocation points 
{ q j :  j=o,  1, 2 , .  . . , N } .  

Transverse mapping and computational domain 

It is both necessary and desirable to incorporate co-ordinate stretching in the wall-normal 
direction. It is necessary to order to map the physical domain O<q<qMAX onto the natural 
domain of the (Chebyshev) spectral collocation method, - 1 <ij< 1. Furthermore, by judicious 
choice of the mapping function, collocation points q j  are redistributed and concentrated in the 
region of high gradients (i.e. at the wall), thereby reducing significantly the number of grid points 
needed for adequate resolution. For the boundary layer problem the following transformation 
has proven useful:5 

O-5qMAX( 1 - tanh a) (1 - i j )  ‘= 1 -tanh [05c~(1 -ij)] ’ 

In (19), u is a free parameter which controls the strength of stretching. 

general unequally spaced and therefore we define 
The locations of the collocation points will be made precise shortly; however, they are in 

Aqj-,=qj-qj-l, j = 1 , 2 , .  . . , N. (20) 
Discretization of the computational (5, ?)-domain is shown schematically in Figure 3. For brevity 
in the discussion to follow, we adopt the following conventions and similar conventions for 0, g 
and f: 

Timelike discretization 

Let 4 be a continuous function of [ and denote 4i=c$([i).Then the fully implicit, backward 
difference approximation of order M to derivative 4’(ci), for equal increments A(‘, is given by 

where coefficients t, for methods up to order five are given in Table I. For M = 1 and 2 
equation (22) defines the familiar backward Euler and three-point backward difference methods 
respectively. 
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Figure 3. Computational domain 

Table I. Coefficients for backward difference methods up to order five 

Backward difference coefficients 

Order M Factor d to ld  t i l d  t,ld t3Id t4/d t5/d 

1 1 IAC 1 - 1  
2 112N 3 -4  1 
3 1 / 6 4  1 1  - 18 9 - 2  
4 1 J24AC 50 -96 12  - 32 6 
5 1/12OA< 274 -600 600 -400 150 -24 

From (22) and vector notation (21) we derive discrete approximations, each with 0 [(Ac)M] 
truncation error, for the left-hand sides of the energy (eLHS,) and momentum (mLHS,) equations 
and the right-hand side of the continuity (cRHS,) equation, whose components are given by 

M 

eLHSij=CiJj C tmei-m, j ,  
m = O  

Only for M = 1 is the fully implicit method self-starting. At the moment we use a scheme of order 
M = 5 which takes four initial steps of orders one, two, three and four before settling into fifth- 
order accuracy. Although formal accuracy is degraded by the initial low-order steps, in practice 
the error is insignificant for small A(, since the boundary layer evolves slowly in the transform 
(C, ?)-plane and since the marching is in C and not x. 
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Spectral collocation 

A clear and concise introduction to spectral methods can be found in a report ‘Spectral 
methods for CFD’ by Zang et al.;” further detail, theory and examples are available in the recent 
text by Canuto et a l l 3  Consequently, we provide minimal theory and detail here and refer the 
reader to these references for greater depth. 

In general, spectral methods are based upon the approximation of a continuous function &(Q) 
on [-1, 13 by a finite series expansion $N(Q) in an orthogonal basis set Bn(Q), namely 

where coefficients &, are termed the ‘spectrum’ of 
ate basis is the set of Chebyshev polynomials 

For non-periodic problems an appropri- 

B,(Q)= Tn(q) = cos(ncos- Q), (25) 

qj=cosyj, yj=nj/N, j = O ,  1, 2, . . . , N .  (26) 

for which the Gauss-Lobatto set (26) is a corresponding natural set of collocation points: 

Set (26) is ‘natural’ in the sense that (25) and (26) render (24) a discrete Fourier cosine transform: 

To evaluate the spectra &,,, the corresponding discrete inverse transform” is 

where 

2, j = O  or N, 
1, O < j < N .  

cj= { 
Interpreted in the light of transformation pair (27) and (28), (24) defines the spectral inter- 

polation polynomial, exact by definition at the collocation points. Unlike polynomial inter- 
polating series defined on equally spaced intervals, series (24) converges uniformly to 4(6) as 
N +  03. Moreover, it can be shown” that for continuously differentiable functions 4, coefficients 

decay to zero faster than any finite power of 1/N as N+m. This is termed ‘spectral 
convergence’. 

Other orthogonal bases (e.g. Legendre polynomials) are possible and lead to corresponding 
transforms and collocation sets. An advantage of the Chebyshev polynomial basis, however, is 
that (27) and (28) yield to efficient fast transform techniques. 

It follows from (24) and (25) that derivative c#&(fj) is given at collocation point qj by 

From (30) we derive the following matrix-vector equation for the vector 4’ whose elements are the 
derivative values at the collocation points: 

# = D N  4, (DN)jn= Tb(qj)- (31) 
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The elements of the matrix D, are most easily computed by a recursion relation which can be 
found in Reference 12. Furthermore, (28) has the matrix-vector form 

F= PN 4 9  (32) 
where the elements of PN are obvious from (28). From (31) and (32) the definition of the spectral 
differentiation operator L, follows immediately, 

LN = D, PN (33) 

A few comments regarding operator L, are in order. When co-ordinate stretching as in (19) is 
used, the stretching metric is incorporated directly into LN through the chain rule and results in 
the scaling of each row of LN by the factor ai j /dq.  It should be noted that unlike finite difference 
differentiation operators, which are banded, spectral operator LN is dense. It is precisely this 
global nature, however, which accounts for the extraordinary accuracy of spectral methods. 
A bonus of the method is that no special differentiation formulae are needed at boundaries as 
required by finite difference techniques. 

For systems of large N the derivatives (34) are most efficiently computed using fast cosine 
transforms. However, for moderately sized systems such as is the case here, matrix multiplication 
is both a simple and efficient method of differentiation which is readily implemented in vector 
mode on array processors. Consequently, we adopt differentiation by matrix multiplication and 
forego discussion of transform methods. 

Discretization of the right-hand side (RHS) of the energy and momentum equations is 
completed by approximation of the continuous operator a/aq with its discrete spectral analogue 
L,, from which the following vector equations result: 

1 
eRHSi = GiLNe, + pr LNv,LNBi + ( y  - 1 ) ~ :  viz i ,  (354 

(35W 

U; = LNui, (36) 

zij = (u;j)z. (37) 

mRHSi = GiLNUi + LNViLNUi. 

Here Gi and Vi are diagonal matrices which contain the values g i j  and pij = Zi j  respectively and, if 

then 

From (23) and (35) we obtain the residual formulations of the energy and momentum equations: 

eri = eRHS, - eLHSi, 

mri = mRHS, - mLHSi. 
(38a) 

(38b) 
There are several reasons why it is advantageous to convert continuity equation (12c) from 

differential to integral form before formulating its residual equation. First, an integral form 
reduces by one the number of equations and eliminates the need for the outer boundary condition 
on g in much the same way that boundary conditions on pressure are eliminated by the use of 
staggered grids in numerical solutions of the Navier-Stokes equations. Secondly, with regard to 
the preconditioner to be developed later, integral rather than differential form is preferable for 
first-order equations. Thirdly, relative to numerical differentiation, numerical integration is a 
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smoothing operation and tends to diminish round-off error. Therefore, integrating both sides of 
(12c) between q j d l  and q j ,  we obtain 

In a manner analogous to the construction of the spectral differentiation operator L N ,  we 
construct the spectrally accurate, discrete integration operator N N  to approximate the continuous 
integral in (39). The following residual form of the continuity equation results: 

crij  = 9.’- t j  gi,j-1-h,, j = 1 ,  2 , .  . . 9 N ,  (40) 
where 

hi = NN cRHS~. 

We close this subsection by discussing the construction of the spectral integration operator NN. 
Consider the approximation 

6 

G j -  I w -  I 

E j = I  &(#j)djiJ-‘J +(fj)dfj, j =  1,2,. . . , N. 

However, 

In matrix-vector form, expression (43) becomes 

E = Q , ~ ,  (44) 

where E is an N-vector and QN is an N x (N + 1) spectral quadrature matrix whose elements are 
obtained from (43) with the help of (26): 

qjn= - sinycos(ny)dy, j=1, 2,. . . , N ,  n=O, 1, 2 , .  . . , N. (45) i” Y J -  I 

From (44) and (32) the N x (N+ 1) spectral integration operator N N  is defined as 

N N  = QN P N .  (46) 
As in the case of the spectral differentiation operator, the stretching metric is incorporated 
directly into N N .  

Preconditioned iteration 

The implicit treatment of the timelike derivative and the non-linearity of the governing 
equations mandate iteration at each marching step. An iterative scheme which fully couples 
residual equations (38a), (38b) and (40) is preferred in order to enhance convergence. To this end, 
let solution vector s:, update vector Asf and residual vector resf=res(sf) be defined as follows, 
where k denotes the iteration index: 
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For the moment, consider only Dirichlet boundary conditions at both the wall and outer 
boundary so that residuals j = O  and j=N vanish automatically. In the terminology above, the 
solution si at step i is defined by res(si)=O. In practice, we accept iterate sf whenever 
1 res ( s f )  1 MAX < E, where E is a specified convergence criterion. 

A straightforward application of Newton’s method for systems is ill-advised for several reasons. 
First, the dense spectral differentiation and integration operators lead to a relatively large, dense 
Jacobian J and a large per-iteration computational workload. Secondly, J if ill-conditioned and 
the convergence of Newton’s method is suboptimal. 

A variant of Newton’s method suited to this problem is  preconditioned Richardson iteration6 
defined by 

H , A S ~ =  - resf, (484 
sf+’ + sf + tAsf .  (48b) 

Preconditioner H is a convenient and easily inverted approximation to Jacobian J and r is a 
relaxation parameter used to control the spectral radius of the iteration matrix Mk= I-tH; ’ Jk. 
Provided the initial guess sp is sufficiently close, spectral radius (Mk)< 1 for all k suffices to 
guarantee convergence. 

Any number of suitable preconditioners are possible. For this problem an effective pre- 
conditioner H was derived from finite difference analogues of residual equations (38) and (40). 
With unknowns ordered according to (47), H has block tridiagonal structure and step (48a) of the 
iteration is accomplished efficiently using a block tridiagonal Gaussian elimination algorithm. 

Diagonal dominance of the preconditioner is a desirable trait which eliminates the necessity for 
pivoting or scaling during Gaussian elimination. Consequently, we exploit both one-sided and 
‘centred’ finite difference approximations on non-standard grids to maintairi the diagonal 
dominance of Hk. For example, if ER, MR and CR denote finite difference versions of residual 
vectors er, mr and cr respectively, then we construct MR as follows: 

-mLHS,, j =  1, 2 , .  . . , N -  1. (49) 

In (49) and in the discussion to follow, the subscript i has been dropped for clarity. Note that the 
first derivative term in (49) is approximated by a first-order backward difference quotient. In 
contrast, the approximation of operator (a/aq)fia/aq is of O ( A V ~ A ~ ~ - ~ )  accuracy and is derived 
from the difference quotient of two second-order centred difference approximations at fictitious 
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points q j - l 1 2  and q j + l l z .  Components of ER are defined analogously and are omitted here. For 
preconditioning the continuity equation, the trapezoid qudrature rule provides a convenient 
finite difference integration operator analogous to NN and leads to the following analogue of (40): 

( l ~ , + h ~ - ~ ) ,  j =  1, 2, . . . , N .  (50) 
C R j = g j - g j - l - ~  Aqj- 1 

2 

Preconditioner H is now defined as the Jacobian of the finite difference residual equations, 
ordered according to (47). Correspondingly, H is of block tridiagonal structure as follows: 

H = (  A2 B, c2 

where Aj ,  Bj and Cj are each 3 x 3 matrices. Specifically, matrices Bj are defined by 

(52) I aERj/aej a m j / a u j  amj / ag j  [ acRj/aej acRj/auj acRj/agj 
Bj= aMRj/aOj aMRj/auj 8MRj/agj , j=1, 2, .  . . , N - 1 .  

Matrices A j  and Cj are defined similarly except that the lower indices are j -1  and j + l  
respectively. 

We complete discussion of the preconditional iteration by addressing some remaining loose 
ends. 

Since g N  is unspecified, there is a 'stray' residual equation for crN to satisfy. The update equation 
which defines AgN is given below and is derived from the residual equations for cr, and CR,: 

Because of the integral treatment of (12c), (53) decouples from system (48a) and is solved 
subsequently. 

In the case of adiabatic wall boundary condition (16b) for temperature, system (48a) is 
appended by an additional equation 

(54) 
where coefficients c,, c1 and c2 are obtained from the three-point forward difference approxima- 
tion of aO/aq on a non-standard mesh. Vector Asl is extended to incorporate AO, and results in 
blocks B, and C, of dimensions 4 x 4 and 4 x 3 respectively. Modification of the block tridiagonal 
algorithm is straightforward if the directions of 'forward' elimination and 'back' substitution are 
reversed. Following the update step (48b), 0, is defined by the requirement 

coAO0 + c1 AOl +c2A02 =0, 

LN8( 0 = 0. (55)  
We note that the preconditioner currently in use does not model the variation of viscosity with 

temperature except in the dissipation term of the energy equation, since the additional terms tend 
to destroy diagonal dominance. 

Finally, we note that iteration (48) can be rendered parameter-free and convergence ehnanced 
dramatically by a residual minimization technique similar to that proposed by Malik et al.'" at a 
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cost of approximately double the per-iteration computational workload. We have chosen not to 
incorporate this optimization for the one-dimensional spectral method at hand. However, for 
spectral approximations in two or more dimensions, such refinement is recommended by 
considerations of computational efficiency. 

Algorithm 

For completeness, we summarize an algorithm which embodies the numerical method detailed 
in this section: 

initialization 
define E, A(, N, etc. 
k+O 
initial guess s8 

for marching steps i=O, 1, 2, . 

I 
I &+iA( I repeat while I resf lWAX > E 

I 
I 1  
I I compute residuals res: spectrally i I compute preconditioner Hk by finite differences 
I I solve HkAsf= -resf I I perform update s:+ t s: + tAs: 
I k e k + l  
I 
I initialize for next step s:+ I e s :  
L k+O 

Note that computation of the initial condition so is performed within the algorithm for i = 0 and 
requires no special treatment except the following. Since timelike derivative terms contribute to 
the diagonal dominance of the preconditioner, it is necessary to restrict t for the i = 0 step and to 
expect slower convergence. 

Before proceeding to the Results section, we offer a couple of recommendations regarding 
accurate and efficient implementation of the algorithm described above. In any spectral method 
applied to a non-linear problem, numerical instability due to aliasing error arises if resolution is 
inadequate. Our preference, rather than resorting to de-aliasing devices, is to maintain sufficient 
resolution N so that aliasing errors are negligibly small. A practical guide to the adequacy of 
resolution is the decay rate of the ‘tail’ of the spectrum of Chebyshev coefficients, as will be 
illustrated in the Results section. Finally, it is recommended that computations for the spectral 
differentiation and integration matrices L N  and NN be performed in double-precision arithmetic 
in order to limit round-off error. Since the operators need be computed only once, the additional 
computational effort is insignificant. 

NUMERICAL RESULTS 

As suggested in the Introduction, this work has been motivated by its applicability in the area of 
stability and transition for compressible flows. In the past few years at NASA Langley Research 
Center, effort has been expended to develop efficient and spectrally accurate computer codes to 
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solve the eigenvalue problems associated with temporal linear stability analyses of high-speed, 
compressible flows. Additional effort has been devoted to developing spectral codes for fully non- 
linear simulation of stability and transition. Although, with sufficiently fine grid resolution, finite 
difference codes can provide the highly accurate mean flow profiles needed for linear stability 
analyses and non-linear simulations, the interpolation from finite difference to spectral grids is 
problematic and a source of error, particularly when co-ordinate stretching is involved. In short, 
this work was initiated in order to provide boundary layer profiles of spectral accuracy for 
spectrally accurate stability codes. Accordingly, our purpose in this section is threefold: to offer 
reasonable validation of the spectral method; to present results of application of the method to a 
particular test problem; and to discuss briefly implications of these results for viscous, linear 
stability theory. 

Test case 

The model problem which we examine is that of computing boundary layer velocity and 
temperature profiles along a cylindrical 'fuselage' of radius a= 10 ft for a high-speed flow at 
Mach 5 and altitude 150 000 ft. The particular parameter values and dimensional quantities 
associated with the test problem are the following, which have been derived with the help of 
standard atmospheric tables and isentropic gas relationships:, 

M , = 5 ,  y=1-4, Pr=0*72, R=lOft, Tm=4800R, 

F,m=28800R, pttm= 15001b/ft2, Re, =52534.28ft-', Re=525342.8. (56) 

In (56), subscript co refers to pre-shock freestream conditions, subscript 't' denotes total 
(stagnation) conditions, Re, is the unit freestream Reynolds number and dimensional quantities 
are expressed in British units. For the scenario of flow along a cylinder, the bow shock wave is 
weak and very oblique, so that for all practical purposes the freestream and edge conditions are 
identical. However, we caution that in general this is not the case and post-shock conditions must 
normally be computed from, say, Reference 11. We summarize the parameter values for the test 
case below, noting that radius R and Reynolds number scale out of the dimensionless governing 
equations: 

M ,  = 5,  Pr = 0.72, y = 1.4, Fe = 480 OR. (57) 
To complete specification of the test case, let us also assume that the fuselage wall is insulated so 
that the appropriate boundary condition is (16b) 

Validation 

The next few figures and tables compare results obtained by the spectral collocation method 
with those computed by a second-order, finite difference standard, the boundary layer code of 
Harris and Blan~hard.~ It is important that only converged solutions be compared and therefore 
we monitor two indicators of convergence: the point value of wall temperature 8, and the integral 
quantity 6, defined by 

qMAX s.=j-o (1 -pu)drt. (58) 

Table I1 shows the variation of these two indicators with refinement of the finite difference mesh 
at the initial station (x=O) and suggests that both quantities have converged to five-place 
accuracy for N=400. As the mesh is further refined (not shown), round-off error dominates and 
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Table 11. Convergence of the finite difference 
method with increasing resolution 

Convergence indicators 

N 4 0, 

25 6.662922 4.9 1 1289 
50 6.99 1767 5.184364 

100 7.007874 5.191081 
200 7.008662 5.191328 
400 7.008684 5.19 1344 

Table 111. Convergence of the spectral method with increasing 
resolution 

Convergence indicators 

26 
41 
65 
77 
82 
92 

101 
1 1 1  
121 
127 

~~~~~~~~~~ 

7.022979757 
7.013028890 
7~010044140 
7.009978464 
7.0099641 13 
7009965493 
7.009964420 
7.009963745 
7.009963 8 50 
7039963 8 54 

5.208872370 
5-194 176396 
5.19 1963437 
5.19 190043 1 
5.19 1884777 
5.19 1887017 
5.191885558 
5.19 1884789 
5.19 1884912 
5.19 1884917 

the values of 6, and 0, diverge. Therefore we accept the solution for N =400 as the converged 
finite difference 'initial' condition. Corresponding information for the spectral method is pre- 
sented in Table 111. Here 6, is computed by a spectrally accurate quadrature law (whereas the 
trapezoid quadrature rule is used for the finite difference method). For the spectral method, two- 
place accuracy is obtained with 27 collocation points; five-place accuracy results from 77 points 
and the solution has converged to nine places with 127 points. Further indication of the adequacy 
of the resolution of the spectral method is shown in Figure 4, in which the magnitudes of the 
components of the spectrum, Uj, are seen to have decayed by 10 orders of magnitude for i = 0 and 
N =  110. The linear decay rate of the spectrum on a logarithmic scale is indicative of spectral 
convergence. The converged finite difference solution and the spectral solution for N > 40 agree to 
three significant figures and, as shown in Figure 5, the respective streamwise velocity profiles are 
indistinguishable in graphical format. For both computations, qMAX = 21, so that the far-field 
boundary condition is applied at a distance of approximately three displacement thicknesses from 
the wall. It should be noted that the stretching metrics differ for the two methods. The finite 
difference scheme incorporates exponential stretching away from the wall whereas the spectral 
scheme relies on (19) with CT= 1.2. 

Figures 6 and 7 compare the evolution of the boundary layer along a cylinder as computed by 
the two different schemes. For both methods the solution is marched downstream a distance of 10 
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Figure 4. Spectrum of the streamwise velocity for N =  110 
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Figure 5. Similarity solution for streamwise velocity 

body radii, starting from the respective converged ‘initial’ similarity profiles at x = = 0. For the 
finite difference standard, which has second-order accuracy in x, 200 equal marching steps are 
taken, each of 0.5 ft. Because of the higher-order (fifth) streamwise accuracy of the spectral scheme 
and because the marching is in c not x, only six coarse steps of equal width ( = 1.028 x 10- are 
taken. Figure 6 compares the growth of the boundary layer displacement thickness & versus 
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Streamwise Growth of Nonsimilar Boundary Layer 
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Figure 6. Streamwise growth of boundary layer displacement thickness along a cylinder 
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Figure 7. Streamwise velocity profile at station i /R= 10 

streamwise distance for the two methods, where 8 is defined by 

The agreement in the computed displacement thickness at the final station is to three significant 
digits. Moreover, Figure 7 shows excellent pointwise agreement in the streamwise velocity 
profiles at the final station. 

Regarding computational efficiency of the spectral algorithm, the computation above for 
values N = 76 and E = 10- a required about 6 CPU seconds on a Cray 2, less than 1 CPU second 
per marching step for i>O. Figure 8 compares the convergence history of the i=O and i = 6  
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Figure 8. Convergence history of the preconditioned iteration for N =76 

iterations, for which respective values of z = 0.25 and z = 0.4 were used. Convergence of the former 
iteration is slower not only because of the smaller value of the relaxation parameter but also 
because the initial guess sg is relatively crude. It should be noted that the M e  = 5 case is a fairly 
stringent test of the method since the preconditioner tends to become ill-conditioned at higher 
values of Mach number. Without the use of double-precision arithmetic in the computation of 
the residuals it is not possible to drive the maximum residual of the energy equation below 
In contrast, we attain maximum residual values of the order of lo-'' using single precision 
for M e =  1.6. 

Implications for linear stability theory 

In the past few years, transition researchers have begun to examine the effects of transverse 
curvature on the stability of flows over axisymmetric bodies. Mack's pioneering work" on the 
stability of compressible flow has encouraged others in that, despite simplifying assumptions, he 
has obtained fair quantitative agreement between linear stability theory and experiment for 
hypersonic flow over a sharp cone.I6 Recently, Kao and Chow have exploited spectral methods 
to study the stability of incompressible flow along cylinders" and blunt cylinders." Inviscid, 
axisymmetric instability modes in the boundary layer of a cylinder have been investigated by 
Duck," by means of finite difference methods, for Mach numbers of 2.8 and 3.8. In a recent 
report, Malik and Spall' document the effects of curvature on both axisymmetric and asymmetric 
instability modes in Mach 5 flow over cylinders and sharp cones. The results presented here are 
intented to parallel those of Malik and Spall. However, we incorporate a temporal rather than 
spatial model of stability and we exploit spectral rather than finite difference numerical methods. 

In the boundary layer of an axisymmetric body, transverse curvature affects stability both 
directly through curvature terms in the stability equations and indirectly through modification of 
the underlying mean velocity and temperature profiles. Streamwise evolution of these mean flow 
profiles is portrayed in Figure 9, obtained by the spectral collocation algorithm. Each profile of 
the family is uniquely identified by a particular value of curvature K defined unambiguously by 

(60) K = &//R = t!&, . 
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NORMALIZED STREAMWISE VELOCITY PROFILES ALONG A CYLINDER 
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Figure 9. Streamwise evolution of (a) normalized velocity and (b) temperature profiles in the boundary layer of a 
cylinder in Mach 5 flow: (0) K=O; (1) K=0.133; (2)  K=0*256 (3) K=0.371; (4) K=0.48; (5) K=0.585; (6)  K=0.686; 

(7) K=0.784; (8) K=0.879; (9) K=O972 
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The rightmost profiles (K = 0) correspond to the initial t = 0 station where displacement thickness 
is insignificant relative to radius. On the other hand, the leftmost profiles correspond to a station 
far downstream where boundary layer displacement thickness and radius are of approximately 
equal magnitudes. For the large unit Reynolds numbers encountered in most flight regimes, O(1)- 
curvature in aerodynamic applications is unlikely. For example, the final station ( . f /R= 10) of 
Figures6 and 7 corresponds to a curvature value of only 0-0425. However, as the results 
presented below will show, even moderate curvature, say 0.01 < K <0.1, may significantly 
influence stability. 

The ‘flat plate’ (K = 0) profiles of Figure 9 also illustrate some of the effects of compressibility 
when compared to, say, the Blasius solution for incompressible flow over a flat plate.* First, the 
temperature variation across the boundary layer increases with increasing M e ;  at M e  = 5 the wall 
temperature is more than five times that at the edge of the boundary layer. Secondly, the 
boundary layer thickens with increasing M e ;  at M e  = 5 the displacement thickness is roughly 
seven times that for incompressible flow. Thirdly, the u-velocity profile tends to ‘flatten’ with 
increasing Mach number. 

Figures 10, 12 and 13 display the influence of increasing transverse curvature K on certain 
instability modes in the boundary layer of a cylinder. Data for these figures are derived from the 
spectral boundary layer code described herein and SPECLS, a spectrally accurate stability code 
developed by Macaraeg et al l9  to solve the eigenvalue problems which arise in viscous linear 
stability theory. Given the Reynolds number based on displacement thickness, ReF, the dimen- 
sionless radius R =R/6= 1/K and wave numbers a=E& and B=p& SPECLS returns the 
eigenvalue w = w, + iwi (and associated eigenfunction), where w, is the circular frequency of the 
instability wave and wi is its (temporal) growth rate. 

A point of reference of the discussion to follow can be found in the neutral stability curves given 
by Mack15 in his review of boundary layer stability theory. We summarize briefly some relevant 
points. For Mach numbers above 2-2, different types of instability modes can coexist. So-called 
‘first-mode’ instabilities exhibit both viscous and inviscid nature, are characterized by relatively 
low frequencies (wave numbers) and are most unstable when oblique. In contrast, ‘second-mode’ 
instabilities are predominantly inviscid in nature, are characterized by high frequencies (wave 
numbers) and are most unstable when propagating in the direction of flow ( p = O ) .  The second 
mode is maximally unstable at M e  =45, with a growth rate several times that of the most unstable 

Temporol Growth Rate vs. Transverse Curvature 
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Figure 10. Variation in temporal growth rate of an axisymmetric second-mode instability wave subject to increasing 
transverse curvature: -, combined effect; ---, indirect effect; ---, direct effect 
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NORMALIZED STREAMWISE VELOCITY PROFILES AT TWO STATIONS 
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Figure 11. Normalized streamwise velocity profiles at two stations: -, K = Q  ---, K =0.0815 

first-mode instability. Of Mack's neutral stability curves, that for M,=4.8 flow over a flat plate 
corresponds most closely with the test cases presented below, although we point out that it was 
computed for wind tunnel rather than flight conditions. The minimum critical Reynolds numbers 
found by Mack at Me = 4.8 for first and second modes are about 400 and 200 respectively at wave 
numbers of about 0.06 and 0.2 respectively. Mack's length scale is E=,/(1?~2/f,). At M, x5 the 
boundary layer displacement thickness $is approximately 10L. Hence the values of wave number 
a and displacement thickness Reynolds number Rez reported below are roughly 10 times their 
respective 'Mack' values. 
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Temporal Growth Rate vs. Transverse Curvature 
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Figure 13. Variation in temporal growth rate of an asymmetric first-mode instability were subject to increasing transverse 
curvature: -, combined effect; ---, indirect effect; - - -, direct effect 

Consider then the axisymmetric ‘second-mode’ instability whose parameter values are given by 

a=2*1, B=O,  Rea=llOOO, R Q 1  (61) 
and whose eigenvalue o is identified by the point at K = 0 in Figure 10. The three curves for K > 0 
describe the direct, indirect and combined influences on the eigenvalue w when transverse 
curvature K is increased as all other parameters remain fixed. To assess the combined influence, 
the stability code is ‘fed’ a value of K and mean flow velocity and temperature profiles 
corresponding to the given curvature. The ‘indirect effect’ curve mimics the approximation of 
Mack,I6 in which curvature is accounted for in the mean flow profiles but curvature terms are 
neglected in the stability equations. The remaining possibility is represented by the ‘direct effect’ 
curve, for which curvature terms are modelled in the stability equations but the mean flow is that 
of a ‘flat plate’ (K = 0) boundary layer. The vertical line in Figure 10 marks the value of K which 
corresponds to Rez= 1 1  OOO for the Re given in (56). That stability is ‘indirectly’ quite sensitive to 
changes in the mean can be inferred by comparing the two velocity profiles of Figure 1 1  with the 
‘indirect effect” curve in Figure 10. Insight into the stabilizing trend is provided in Figure 12, 
which compares the variation of growth rate mi with wave number a for axisymmetric instability 
modes. The solid line defines the ‘flat plate’ (K =0) case whereas the broken line corresponds to 
the ‘combined effect’ produced by a curvature value K = 0.08 15. As observed by Malik and Spall,’ 
the second-mode hump is both diminished in height and shifted towards higher frequencies 
(higher wave numbers in temporal theory). Owing to the displacement, wave numbers on the 
long-wavelength (low-wave-number) side of the hump are strongly stabilized by increasing 
curvature. 

Information similar to that found in Figure 10 is presented in Figure 13  for an asymmetric 
‘first-mode’ instability wave whose parameter values are given by 

a = 0.6, B= 1, Rez= 11 OOO. (62) 
Here the obliqueness angle of 59” is near that which gives the greatest growth of Mach 5. In 
contrast to the previous case, the trend is toward destabilization with increasing curvature K. In 
comparing Figures 10, 12 and 13, it is interesting to note that the ‘direct’ and ‘indirect’ influences 
can tend in the same direction, as they do for the second-mode disturbance, or in opposite 
directions, as they do for the first mode. Our experience based on a limited number of cases is that 
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frequency w, is relatively insensitive to the effects of moderate curvature for the temporal model of 
stability. 

Obviously, the influences of transverse curvature on primary instability mechanisms are subtle 
and further research is warranted. One conclusion, however, seems clear: whereas the effects of 
transverse curvature on compressible stability may be unimportant in many aerodynamic 
applications, it is ill-advised to ignore them routinely. 

CONCLUSIONS 

An efficient and highly accurate algorithm has been developed for numerical solution of the two- 
dimensional or axisymmetric compressible boundary layer equations and has been applied to a 
practical problem arising in compressible linear stability theory. 

The numerical method incorporates a fifth-order, fully implicit, finite difference technique in 
the marching (streamwise) dimension and a spectral collocation technique using Chebyshev 
polynomials in the wall-normal dimension. Preconditioned Richardson iteration based on finite 
difference approximations of the Jacobian is used to minimize the residuals of the discrete 
governing equations at each marching step. The algorithm is shown to provide high-accuracy 
solution of the boundary layer equations with significantly fewer grid points than are required by 
standard finite difference methods. Execution time on a Cray YMP is less than 1 CPU second per 
marching step for a mesh of N = 77 collocation points. The preconditioned iteration is com- 
putationally intensive in the sense that approximately 30 iterations are required to reduce the 
maximum residual by seven orders of magnitude. There are many possible preconditioning 
schemes, and refinement of the preconditioned iteration could likely improve global efficiency by 
as much as a factor of five. 

A practical application of the algorithm arises in compressible linear stability theory, in the 
investigation of the effects of transverse curvature on the stability of flows over axisymmetric 
bodies. Curvature influences instability both directly, through the ‘curvature terms’ of the 
equations governing stability, and indirectly, through modification of the underlying mean flow. 
In particular, regarding the ‘indirect’ influence, transverse curvature destroys self-similarity of the 
boundary layer. Here we have used the spectral collocation algorithm to derive the non-similar 
mean velocity and temperature profiles in the boundary layer of a cylinder in a high-speed flow 
parallel to its axis. These profiles have subsequently been used as input to a spectrally accurate 
(temporal) stability code in order to assess both the direct and indirect effects of transverse 
curvature on stability. Although the streamwise variations in the mean are relatively small for 
Reynolds numbers typical of flight conditions, the stability of the flow is quite sensitive to these 
changes. Moreover, the direct and indirect influences can be additive or subtractive depending on 
the parameters of the flow and the wave numbers of the imposed disturbances. Because of the 
multiplicity of parameters and the many possible scenarios, further research is warranted. 
Whereas it may be possible in many aerodynamic applications to ignore the effects of transverse 
curvature on primary instability mechanisms, to do so routinely is ill-advised. 

Perhaps a more significant question for transition researchers, and one that needs to be 
addressed, is how transverse curvature affects mechanisms of secondary instability. 
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